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Children display an early sensitivity to implicit proportions (e.g., 1 of 5 apples vs. 3 of 4 apples), but
have considerable difficulty in learning the explicit, symbolic proportions denoted by fractions (e.g., “1/
5” vs. “3/4”). Theoretically, reducing the gap between representations of implicit versus explicit propor-
tions would improve understanding of fractions, but little is known about how the representations de-
velop and interact with one another. To address this, we asked 177 third, fourth, and fifth graders (M =
9.85 years, 87 girls, 69% White, 19% low income) to estimate the position of proportionally equivalent
integers and fractions on number lines (e.g., 3 on a 0–8 number line vs. 3/8 on a 0–1 number line, Study
1). With increasing age, children’s estimates of implicit and explicit proportions became more coherent,
such that a child’s estimates of fractions on a 0–1 number-line was a linear function of the same child’s
estimates of equivalent integers. To further investigate whether preexisting integer knowledge can facili-
tate fraction learning through analogy, we assigned 100 third to fifth graders (M = 10.04 years, 55 girls,
76% White) to an Alignment condition, where children estimated fractions and integers on aligned num-
ber lines, or to a No Alignment condition (Study 2). Results showed that aligning integers and fractions
on number lines facilitated a better understanding of fractional magnitudes, and increased children’s
fraction estimation accuracy to the level of college students’. Together, findings suggest that analogies
can play an important role in building a coherent understanding of proportions.

Keywords: number line estimation, mathematical development, analogical reasoning, numerical cogni-
tion, progressive alignment

Understanding fractions is important for academic and professional
success. In academic settings, fraction knowledge uniquely predicts
performance in algebra and overall mathematics, both concurrently
(Siegler et al., 2011) and longitudinally (Siegler et al., 2012). In profes-
sional settings, fraction knowledge continues to be essential. Over
65% of a nationally representative sample of adults in the United

States reported using fractions at work (Handel, 2016). Despite their
importance in school and the workplace, however, fractions are notori-
ously difficult to learn. Both children and even highly educated adults
experience considerable challenges with fractions (Fazio et al., 2016;
Ni & Zhou, 2005; Opfer & DeVries, 2008).

Despite the centrality of fraction understanding, there is little con-
sensus regarding its development (Gallistel & Gelman, 1992; Geary,
2006; Siegler et al., 2011). Specifically, there is an ongoing debate on
the role of integers in fraction learning, whether fraction understand-
ing emerges independently from integer knowledge, and whether inte-
ger understanding supports or impedes fraction understanding.

In the present article, we investigate these issues by examining
children’s estimates of integers and fractions on number lines. Num-
ber lines are a valuable diagnostic tool because they require a contin-
uous, scalar response to the implicit and explicit proportions denoted
by integers and fractions. When estimating the position of the integer
3 on a 0–8 number line, for example, the proportion 3/8 is only
implicit. In contrast, when estimating the fraction 3/8 on a 0–1 num-
ber line, the proportion 3/8 is explicit. Thus, comparing estimation of
integers and fractions on number lines provides a robust test of the
idea that fractions and integers develop separately versus jointly.

Based on previous results (Mack, 1995), we hypothesized that
estimates of implicit proportions (i.e., estimating integers on num-
ber lines) and explicit proportions (i.e., estimating fractions on
number lines) would be weakly correlated at the outset of learning,
but would converge into a coherent, linear representation with
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schooling. Further, because ratios are the defining property of all
rational numbers, we hypothesized that the coherence of fraction
and integer estimation on number lines would predict the ability to
deal with fractions in other, nonestimation tasks.

Separate Development of Integer and Fraction
Understanding

Early research on fraction learning proposed that integer under-
standing was qualitatively different from, and even interfered
with, fraction understanding. In line with these views, even after
years of fraction instruction, children mistakenly generalize prop-
erties of integers to fractions (Ni & Zhou, 2005; Thompson &
Opfer, 2008; Vamvakoussi & Vosniadou, 2010). Children are also
often biased by the whole-number components of a fraction. In
fraction comparison or ordering, for example, many children rely
solely on either numerators or denominators—that is, incorrectly
choosing the one with a larger numerator (or denominator) as a
larger fraction, 4/12 . 2/3 (Hartnett & Gelman, 1998). Indeed,
even college students are slower and less accurate when the
smaller fraction has larger components, exhibiting inaccurate
whole-number strategies (Fazio et al., 2016; Fitzsimmons et al.,
2020b; Opfer & DeVries, 2008).
According to Gelman and others (Gallistel & Gelman, 1992), our

innate number sense evolved to handle discrete quantities, thereby
rendering the concept of fractional number counterintuitive. A similar
argument is made from an evolutionary perspective (Geary, 2006),
with integer processing depicted as humans’ innate competence, and
fractions depicted as the product of the culture in modern society,
which must be learned laboriously (Dehaene, 2011; Feigenson et al.,
2004). These perspectives echo Kronecker’s claim that “God made
the integers; all else is the work of man” (Bell, 2014).

Integrating Integer and Fraction Understanding via
Analogical Bootstrapping

In contrast with this older research, a growing body of new
research suggests that intuitive understanding of fractions emerges
from infancy and even in nonhuman animals. For example, human
infants are capable of distinguishing between proportions (e.g.,
6:18 dots vs. 11:22 dots; McCrink & Wynn, 2007) and making
probabilistic inferences from proportions (Denison & Xu, 2014).
Beyond humans, nonhuman animals, such as newly hatched chicks
and rhesus monkeys, can compare perceptual proportions (Rugani
et al., 2016; Vallentin & Nieder, 2008). Therefore, it is possible
that an innate ratio processing system, parallel with the innate sys-
tem for processing integers, could support the development of
fractional knowledge (Kalra et al., 2020; Lewis et al., 2016; Mat-
thews & Chesney, 2015; Matthews et al., 2016). Moreover, there
might also exist general systems that represent both integer and
fraction magnitudes, such as a general magnitude system that rep-
resents both discrete and continuous quantities (Leibovich et al.,
2017; Newcombe et al., 2015), or a general number system that
represents all rational numbers (Clarke & Beck, 2021).

There is also evidence suggesting that representations of explicit
proportions denoted by fractions are closely related to representa-
tions of implicit proportions denoted by relations between integers
(Fazio et al., 2014; Iuculano & Butterworth, 2011; Jordan et al.,
2013). In Fazio et al. (2014), for example, children were asked to
estimate a given number (a large integer or a fraction) on a number
line flanked by two numbers (Figure 1A). To-be-estimated inte-
gers and fractions were designed to be in approximately the same
position on number lines (e.g., estimating ‘375’ on a 0–1,000 num-
ber line or ‘3/8’ on a 0–1 number line). The researchers found that
children’s estimates of large integers were more accurate and lin-
ear than their estimates of fractions. The accuracy of large-integer

Figure 1
Illustration of Tasks in Study 1

Note. PN = position-to-number task; NP = number-to-position task. See the online article
for the color version of this figure.
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estimates positively correlated with that of fraction estimates, sug-
gesting that representations of large integers and fractions are
related to each other.
In light of such considerations, Siegler et al. (2011) proposed an

integrated theory of numerical development that emphasizes the
developmental continuity between integers and fractions. Accord-
ing to the integrated theory, there are four important trends in nu-
merical development: (1) accurately representing nonsymbolic
numeric value (e.g., 3 dots); (2) associating symbolic numbers
with nonsymbolic numeric values (linking ‘3’ to 3 dots); (3)
extending numerical understanding from small to large integers;
and (4) extending integer understanding to understanding of
rational numbers, including negatives, decimals, and fractions
(Siegler & Lortie-Forgues, 2014). From this perspective, the cog-
nitive system for representing integers is not an obstacle standing
in the way of understanding fractions, but a stepping stone to
understanding them all.
How we extend integer understanding to understanding other

rational numbers, however, is unclear. We propose that analogy
could serve as an underlying mechanism for this process. Gener-
ally, analogies allow learners to bootstrap learning far beyond
what the input provides (Gentner, 1983). Indeed, analogical rea-
soning is widely used in our daily life and science (Hofstadter &
Sander, 2013; Holyoak, 2012), and plays an important role in cog-
nitive development (Gentner, 2010; Siegler, 1989).
At the same time, analogical reasoning often requires cognitive

support, so merely knowing the meaning of integers would not be
sufficient to understand fractions. One important cognitive support
is direct alignment (i.e., spatially aligning matching components
between targets and bases; Gentner, 1983; Gentner & Markman,
1997; Matlen et al., 2020). This alignment supports encoding of
the maximal structural similarity between two representations;
thereby, facilitating the abstraction of common relational structure
and analogical transfer (Falkenhainer et al., 1989; Wolff & Gent-
ner, 2000). Direct spatial alignment is also a characteristic of math
education in East Asian schools, despite being less prominent in
U.S. schools (Richland et al., 2007).
Analogies between well-understood small numbers and poorly

understood fractions seem especially likely to be helpful. The rea-
son is that integer understanding develops piecemeal (Siegler &
Opfer, 2003; Thompson & Opfer, 2010), with the understanding
of small integers (like 3 or 37) being superior to the understanding
of large integers (like 375). Thus, children’s estimates of 3 on a
0–8 number line would likely be more accurate than their esti-
mates of 375 on a 0–1,000 number line or their estimates of 3/8 on
a 0–1 number line.
Additionally, comparing the position of familiar and unfamiliar

numbers on number lines does seem to elicit proportional analo-
gies (Opfer & Martens, 2012; Opfer & Siegler, 2007). For exam-
ple, Thompson and Opfer (2010) showed that by comparing the
position of 15 on a 0–100 number line to that of 150 on a 0–1,000
number line, second graders who were typically accurate on 0–100
number lines and erroneous on 0–1,000 number lines quickly
improved their estimates of numbers between 0 and 1,000. Like-
wise, proportional analogies (e.g., comparing the location of 3/8
on a 0–1 number line to the location of 3 on a 0–8 number line)
may extend understanding of small integers to fractions.
These two ideas—that the proportional magnitudes of small

integers are understood before the proportional magnitude of

fractions and that comparison of small integers and fractions leads
to a better understanding of fractions—have never been tested. If
true, they would immediately suggest a novel educational inter-
vention. In the current study, we aimed to conceptually replicate
and extend Thompson and Opfer (2010) to examine whether we
can use aligned number lines between integers and fractions to fur-
ther extend people’s small integer knowledge to fractions. More
broadly, we hypothesized that analogy provides a way for children
to develop representations of a potentially infinite number of num-
bers on a continuous number line when they can only have limited
experiences with particular numbers.

Learning Fractions With Number Lines

Many studies have shown that depicting the position of fractions
on number lines facilitates fraction understanding among both typ-
ically developing elementary students (Fazio et al., 2016; Moss &
Case, 1999; Saxe et al., 2007) and at-risk math learners (Dyson et
al., 2020; Fuchs et al., 2016, 2013, 2014). Fraction interventions
emphasizing the measurement interpretation of fractions (i.e., frac-
tions are numbers that are used to measure quantities; Hecht et al.,
2003) led to better fraction proficiency than traditional curricula
emphasizing the part-whole relation of numerators and denomina-
tors (Fuchs et al., 2014). This effect of fraction number-line inter-
vention appears both broad and durable (Dyson et al., 2020).

Unfortunately, most previous interventions on fraction learning
have included multiple evidence-based instructional components (e.g.,
graduated sequence, direct instruction, and strategy instruction;
Hwang et al., 2019; Misquitta, 2011) over multiple sessions (e.g.,
5–36 sessions with each session ranging from 30 min to 7 hr, and the
majority of the studies implemented the intervention 2–4 days per
week; Roesslein & Codding, 2019; Shin & Bryant, 2015). Thus, it is
difficult to identify the “active ingredient” in facilitating a better repre-
sentation of fractions. This is unfortunate because it leaves the mecha-
nism of cognitive development unclear.

A few studies that have aimed to explain the effectiveness of
number line interventions suggest that number lines are effective
because they reduce numeric value to a single dimension of transi-
tive relations (Fazio et al., 2016; Gunderson et al., 2019; Hamdan
& Gunderson, 2017). For example, Gunderson and colleagues
found that a fraction number-line training improved students’
knowledge of fractional magnitudes more than an area-model
training, suggesting that the unidimentionality of number lines is
critical (Gunderson et al., 2019; Hamdan & Gunderson, 2017).
The number line apparently highlights an important similarity
between integers and fractions, that, just like integers, fractions
can be ordered on a single dimension (Gunderson et al., 2019).
Thus, a proportional relation between two components (i.e., the
numerator and the denominator) of a fraction is reduced to a single
point on a unidimensional line. As processing complex relations
between fraction components requires working memory (Doumas
et al., 2008; Halford et al., 1998; Hummel & Holyoak, 1997; Kalra
et al., 2020), representing fraction magnitudes on a number line
may free working memory resources for richer encoding and prob-
lem-solving (e.g., ordering multiple fractions by magnitude).

Another important feature of previous interventions is that all of
the above-mentioned studies taught children to estimate fractions on
number lines by providing extensive, item-by-item corrective feed-
back, thereby fostering development via reinforcement learning. An
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appealing feature of analogical learning is that it entails “zero-shot,”
unsupervised learning (Gentner, 2010; Kurtz et al., 2001; Opfer &
Doumas, 2008; Siegler, 1989). From the perspective of the Knowl-
edge-Learning-Instruction framework (Koedinger et al., 2012),
learning events can be categorized into “memory and fluency proc-
esses” (effective for learning facts), “induction and refinement”
(effective for learning rules), and “understanding and sense-making”
(effective for learning principles). To further explore whether ana-
logical bootstrapping helps children better understand fractions by
learning the relational structure between integers and fractions, the
current study focused more on students generating internal schema
(“understanding and sense-making processes”) rather than memoriz-
ing specific magnitudes reinforced by corrective feedback (“memory
and fluency processes”). Whether children can learn fractional mag-
nitudes without feedback is an intriguing possibility, especially
given the inherent difficulty of learning fractions and the extensive
feedback featured in previous studies (e.g., Fazio et al., 2016).

Current Studies

The current studies investigated (a) whether representations of
integers and fractions develop independently or become more
coherent over the course of development (Study 1) and (b)
whether structurally aligning integers and fractions would facili-
tate understanding of one, both, or neither (Study 2).
In Study 1, we conducted a cross-sectional study examining third,

fourth, and fifth graders’ number-line estimates of integers and frac-
tions that were proportionally identical to the upper bound of a num-
ber line (e.g., 3 on a 0–8 number line or 3/8 on a 0–1 number line).
These grades are particularly important to test because instruction on
fractions begins in the middle of third grade (i.e., after our testing)
and continues through fifth grade (Common Core State Standards
Initiative, 2010). By focusing on this grade range, we could examine
what children might typically learn at school during this time. At the
same time, the instruction does not (yet) include a systematic com-
parison of the placement of integers and fractions on number lines,
so it is not clear whether or when children might treat them as pro-
portionally equivalent on number lines (see Figure 1A).
We expected that if integer and fraction representations develop

independently (Gallistel & Gelman, 1992; Geary, 2006), estimates
for proportionally equivalent integers and fractions would be stat-
istically independent (i.e., not reliably correlated). In contrast, if
children develop a coherent representation of fractional and inte-
ger magnitude, estimates of fractions and integers would be
strongly related to each other, with correlations strengthening and
the discrepancy between the proportions estimated for integers and
fractions declining over time. To test this hypothesis, we measured
representational coherence between integers and fractions using
two novel measures: (a) the correlation between integer and frac-
tion estimates on proportionally equivalent number lines (Integer-
Fraction Correlation, IFC) and (b) the absolute difference between
estimations of integers and fractions (Integer-Fraction Discrep-
ancy, IFD), which we will detail in the Method section.
In Study 2, we investigated whether analogies to implicit pro-

portions denoted by relations of integers would facilitate under-
standing of explicit proportions denoted by fractions. Using a
pretest-training-posttest design, we randomly assigned third-to-
fifth graders to one of two conditions that differed only in the
training phase. In the Alignment condition, children solved aligned

pairs of number-line problems; in the No Alignment condition,
children solved the same problems one at a time.

We expected that preexisting knowledge of integers would help
children better understand the nature and structure of fractions given
cognitive support of alignment. We also explored whether comparing
integers to fractions would improve judgments of integers. An inter-
esting feature of analogical bootstrapping is that comparison of two
partially understood domains leads to improvements in both domains,
not just the poorly understood domain (Kurtz et al., 2001).

Study 1

Method

Participants

One hundred and seventy-seven third-to-fifth graders (69%
White; 17% low-income; 54 third graders, M = 8.79, SD = .31, 26
females; 66 fourth graders, M = 9.90, SD = .42, 30 females; and
57 fifth graders, M = 10.80, SD = .40, 31 females) from two public
school districts in the Midwestern United States participated in the
current study at the beginning of the fall semester. This study was
approved by the Institutional Review Board (IRB) of the Ohio
State University (Project 2013B0450: Early Development in
Mathematical Skills).

Materials and Procedure

Participants completed the following six tasks on a laptop in a
random order: four number-line tasks (2 number formats [integer
or fraction] 3 2 tasks [position-to-number or number-to-posi-
tion]), fraction comparison, and fraction ordering (see Figure 1).
Data and study materials for Study 1 and Study 2 are available at
Open Science Framework (OSF, https://osf.io/cetjp/?view_only=
116ad3d9bf454e568cf59a248300f1ca; Yu et al., 2021). The stud-
ies were not preregistered.

Fraction Position-to-Number (FPN) Task

In the Fraction Position-to-Number task, children needed to pro-
duce a number corresponding to a mark on a 0–1 number line
(Iuculano & Butterworth, 2011). First, children saw a number line
flanked with 0 and 1, and were instructed “In this game, you are
going to see a number line like this. Each number line will have a
0 at this end and a 1 at the other end. There is also going to be a
hatch mark somewhere on the line. Your job is to estimate what
fraction goes with the mark.” Then, a total of 10 number lines
were presented sequentially, with “0” marked on the left end and
“1” marked on the right end. On each trial, children were pre-
sented with a location indicated by a hatch mark on the number
line and were asked to estimate which fraction corresponded to the
mark. To-be-estimated fractions were 1/11, 1/7, 1/4, 3/8, 2/5, 4/7,
2/3, 7/9, 5/6, and 9/10. These magnitudes were chosen to be
evenly distributed on the number line, with one fraction drawn
from each tenth of the number line.

Integer Position-to-Number (IPN) Task

The integer PN task was identical to the fraction PN task, except
for the to-be-estimated and right-end numbers. The to-be-estimated
integers and right-end numbers were chosen based on the fractions
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included in the fraction PN task, such that stimuli were proportion-
ally identical on the number lines to those in the fraction task. For
example, for the fraction 3/8, the corresponding integer number line
ranged from 0 to 8, and the mark was located at the position of 3.
We kept integers in this task the same as the integer components of
fractions rather than using a fixed right-end number (e.g., 1,000 in
Fazio et al., 2014) to control the size of numbers. Ten integers that
corresponded to fractions used in the fraction PN task were used: 1
on a 0–11 line, 1 on a 0–7 line, 1 on a 0–4 line, and so on. At the
start of the task, children saw a number line with “0” marked on the
left end and “?” marked on the right end. Children were instructed
“In this game, you are going to see a number line like this. Each
number line will have a 0 at this end and a whole number at the
other end. There is also going to be a hatch mark somewhere on
the line. Your job is to estimate what number goes with the mark.
You need to pay attention to this number (pointing to the right end)
because it may change.” On each trial, children were asked to esti-
mate which integer corresponded to the mark.

Fraction Number-to-Position (FNP) Task

In this typical fraction estimation task (e.g., Siegler et al., 2011),
children estimated the position of a given fraction on a number line
flanked by “0” and “1” by dragging a hatch mark. At the start of
each trial, the hatch mark was located at 0. To-be-estimated fractions
were the same magnitudes used in the fraction PN task. Addition-
ally, to investigate whether children’s estimates of equivalent frac-
tions are affected by the size of individual components of fractions
(i.e., numerators and denominators), children also estimated equiva-
lent fractions with independent components that had been doubled
(2/22, 2/14, 6/16, etc.; referred to as large-component fractions;
Braithwaite & Siegler, 2018; Fitzsimmons & Thompson, 2022; Fitz-
simmons et al., 2020a, 2020b), resulting in 20 trials in total.

Integer Number-to-Position (INP) Task

In this task, children estimated the location of an integer on the
number line by dragging a hatch mark. This task differed from typical
number line estimation tasks (Siegler & Opfer, 2003) in that the right
endpoint differed from trial to trial. As in the integer position-to-num-
ber task, children were told that the right endpoint might change in
the instructions. Children completed a total of 10 trials in which the
magnitudes were the same as those used in the integer PN task.

Comparison

The comparison task was the same as in Siegler et al. (2011). In
this task, children compared 3/5 to each of the following fractions:
2/9, 3/8, 5/9, 4/7, 5/8, 2/3, 4/5, and 8/9. These fractions were cho-
sen so that there were equal numbers of magnitudes to be com-
pared on both sides of 3/5. On each trial, we asked children to
press the left or right arrow on the keyboard to choose the larger
of two fractions (e.g., 3/5 and 2/9). Fraction pairs remained on the
screen until a response was made. For each comparison pair, the
larger fraction would appear on the left once and on the right once,
resulting in a total of 16 trials.

Ordering

The ordering task was a simplified version of Mazzocco and
Devlin (2008). On each trial, children were asked to order three
fractions from smallest to largest. To-be-ordered fractions were

chosen from the following fractions: 1/7, 1/4, 3/8, 2/5, 4/7, 2/3, 7/
9, 5/6, and 9/10. There were nine trials in total, with each of the
nine to-be-ordered fractions appearing in 3 different trials.

Results

We first present descriptive results for comparison, ordering, and
number-line tasks. These tasks all had high internal reliability, with
Cronbach’s alpha ranging from .76–.94 (comparison: .79, ordering:
.92, integer number-to-position: .82, integer position-to-number: .76,
fraction number-to-position: .84, fraction position-to-number: .94).
Then, we used two representational-coherence measures: (a) Inte-
ger-Fraction Correlation and (b) Integer-Fraction Discrepancy (see
below for details), to examine the coherence between integer and
fraction representations, how this coherence changed developmen-
tally, and whether this coherence predicted accuracy of comparison
and ordering.

Comparison

The average accuracy increased with grade (49.9%, 63.3%, and
79.2% for third, fourth, and fifth graders, respectively). Accuracy
on each trial of the comparison task was analyzed using a general-
ized mixed-effects model with by-participant and by-item random
intercepts, and grade (coded as a continuous variable throughout
the article) as fixed effects.1 The analysis was conducted using the
lme4 package (Bates et al., 2015) in R (Version 3.6.3; R Core
Team, 2020). The likelihood of comparing fractions correctly
increased as grade increased, b = .70, SE = .09, p, .001.

Ordering

We scored each trial based on how many fraction pairs children
ordered correctly within each triplet, ranging from 0 to 3, and
summed a total score for each participant. Accuracy was calculated
as the percent correct out of 27 (i.e., nine trials with a possible score
of three for each trial) for each participant. Average accuracy for
third, fourth, and fifth graders was 81.2%, 81.0%, and 84.3%,
respectively. Scores on each trial were analyzed using a linear
mixed-effects model with by-participant and by-item random inter-
cepts, and grade as a fixed effect. There was not a significant effect
of grade on scores on the ordering task, b = .04, SE = .06, p = .434.

Number Line Estimation

To assess children’s accuracy in number line estimation tasks,
we calculated percent absolute error (PAE) for each trial, which is
defined as jto-be-estimated number - child’s estimatej/ number
range. For example, if a child estimated the given fraction of 3/8
as 2/5 on a 0–1 number line, then PAE = (j3/8 – 2/5j)/1 3 100% =
2.5%. In the PN tasks, children identified which number was rep-
resented by a given hatch mark on a number line. Thus, there were
responses that were larger than the upper bounds (e.g., 3/2 for the
given magnitude of 3/8 on a 0–1 number line). To exclude these
extreme values, PAE larger than 3 SDs of the mean were excluded
from further analyses (1% of the data).

As expected, the average PAE for fractions (PN: 54.3%, NP:
16.7%) was greater than those for integers (PN: 9.8%, NP: 9.2%).

1 Results remained similar when we coded grade as a categorical
variable.
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Children were more accurate (i.e., lower PAE) in their estimates of
integers than fractions in both tasks and became more accurate in
both tasks and number formats across grades (Figure 2A). We exam-
ined the effects of grade, number format, and task in a linear mixed-
effects regression with grade, number format (integer, fraction), and
task (PN, NP) as fixed effects, with by-participant random slopes for
number format and task, by-participant random intercepts, and by-
item random intercepts. The distribution of PAE was skewed, so we
used log-transformed PAE as the dependent variable (also see
Marchand et al., 2020). Because the fraction NP task involved 10
additional large component-size fractions which did not overlap with
the other three number line estimation tasks, we only included trials
with overlapping to-be-estimated numbers across the four tasks (i.e.,
fractions with small independent components) in this model to disen-
tangle the effect of component size and the effect of tasks.
Results revealed that PAE of children’s estimates decreased (i.e.,

estimates became more accurate) as grade increased (third: 34.0%,
fourth: 18.7%, fifth: 16.0%), b = �.23, SE = .03, p , .001. As pre-
dicted, children were more accurate in their estimates of integers than
fractions (integer PAE: 9.5%, fraction PAE: 35.5%), b = �.35, SE =
.02, p , .001, and they were more accurate on the PN task than the
NP task (PN PAE: 32.2%, NP PAE: 13.0%), b = �.08, SE = .02,
p, .001. There was also a Task3 Format interaction, b = .18, SE =
.01, p , .001, which indicated a larger advantage for the integer for-
mat over fraction format in the PN task (b = .56, SE = .01) than the
NP task (b = .15, SE = .01). In addition, we also observed a Grade3
Task interaction, b =�.06, SE = .02, p, .001, indicated by a steeper
decrease in PAE with grade in the PN task (b = �.30, SE = .03) than
the NP task (b = �.17, SE = .03). More importantly, there was a
Grade3 Format interaction, b = �.07, SE = .02, p, .001, indicated
by a greater decrease in PAE with grade for fractions (b = �.30,
SE = �.03) than integers (b = �.17, SE = .03). In other words, the
advantage of the integer format over fraction format reduced as grade
increased. This finding suggests that children may be developing a
more coherent representation of integers and fractions, an issue we
examine more directly in the next section.
To examine the effect of component size on estimation accu-

racy, we submitted PAE on the fraction NP task to a linear mixed-
effects model with grade and component size (small-component

fraction, e.g., 3/8, vs. large-component fraction, e.g., 6/16) as fixed
effects, by-participant random slopes for component size, by-par-
ticipant random intercepts, and by-item random intercepts. We
again found that children were more accurate in their estimates as
grade increased, b = �.28, SE = .04, p , .001. Children’s PAE
was similar for large-component and small-component fractions,
b = .02, SE = .05, p = .653. However, grade and component size
had small interactive effects, b = .04, SE = .01, p , .01, indicating
that the advantage for small components increased with grade
(third: large-component 23.0%, small-component 25.0%; fourth:
large-component 16.7%, small-component 15.9%; fifth: large-
component 10.7%, small-component 10.0%).

Developing Coherent Integer and Fraction Representations

To investigate representational coherence, we used two repre-
sentational-coherence measures: (a) Integer-Fraction Correlation,
which is the correlation between estimates of proportionally equiv-
alent integers and fractions (e.g., 3 on a 0–8 and 3/8 on a 0–1 num-
ber line; see simulations in Figure 3); and (b) Integer-Fraction
Discrepancy, which is the absolute difference between estimates
of proportionally equivalent integers and fractions (e.g., j(estimate
of 3)/(upper bound of 8) – (estimate of 3/8)j). For example, if a
participant places five to the question “Where is 3 on a 0–8 num-
ber line?” and places 5/8 to the question “Where is 3/8 on a 0–1
number line?,” then the Integer-Fraction Discrepancy would be 5/
8 – 5/8 = 0, indicating coherent (but inaccurate) representations of
integers and fractions. Because estimates can be larger than the
upper bound, trials with IFD beyond 3 SDs of the mean were
excluded from further analyses on IFD (.23% of total trials).

To further illustrate how the IFC varies when participants have
incoherent representations of integers and fractions, we ran simulations
of IFC generated from different combinations of compressive, ex-
pansive, and linear representations of integers and fractions (see
Figure 3). More specifically, we simulated mean representations of
integer and fraction magnitudes by the equation: Estimates = a 3
GivenProportionb. a is the scaling parameter. b indicates how com-
pressive or expansive the representation is, with b , 1 as compres-
sive representations, b = 1 as linear representations, and b . 1 as
expansive representations. In our simulations, for the compressive

Figure 2
Percent Absolute Error (PAE) of Fraction and Integer Estimates (A) and Integer-Fraction
Correlation Between Median Estimates of Integers and Fractions (B) in Study 1

Note. Error bars indicate 6 SEM. PN = position-to-number task; NP = number-to-position task. See the
online article for the color version of this figure.
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representations, a = 1, b = .3; for the expansive representations, a =
1, b = 1.7; and for the linear representations, a = 1, b = 1. For each
combination, Figure 3 plots representations of integer and fraction
magnitudes as a function of given proportions (e.g., to-be-estimated
magnitudes used in our number line estimation tasks) and the best-
fitting functions. Our simulations showed that IFC is the highest
when representations of integers and fractions follow the same
function, even when the best-fitting function is not necessarily the
most accurate one.
As these simulations make clear, neither the IFC nor the IFD is

simply accuracy. For example, if both fraction and integer estimates
increased logarithmically (or even sinusoidally), estimates would be
inaccurate but highly correlated (Figure 3 A1). Or, if both fraction
and integer estimates increased linearly, but the slope of the functions
differed, there would be a high correlation but also a high discrep-
ancy. Conversely, if estimates followed a cyclic power function—
estimates increased as a power function of true values that are biased
by reference points such as ends and the middle of the number line
(Hollands & Dyre, 2000; Slusser et al., 2013)—but the two functions
were out of phase (e.g., children use a different number of reference
points for integer and fraction estimation two estimation functions
involve different cycles), accuracy could be quite high, yet the dis-
crepancy might also be high. Moreover, IFC is an integrated measure
across all given proportions and IFD is the distance between each
estimate of proportionally equivalent integers and fractions. Thus, the
IFC and IFD measures provide a more direct and valid measure of
representational coherence than mere accuracy.

Integer-Fraction Correlation

First, we computed IFC with overall median estimates. IFC was
strong from the third grade (PN: r = .86, p , .01; NP: r = .86, p ,

.01) and became perfect in fourth and fifth grades in both PN and
NP tasks (PN: r = .99, p , .001; NP: r = 1.00, p , .001; Figure
2B). The increase in correlation strength with age suggests that
children are forming more coherent representations between dif-
ferent formats of numbers throughout development.

Then we computed IFC for each individual and submitted these
values to a linear mixed-effects model with grade and task (PN,
NP) as fixed effects and by-participant random intercepts. As
shown in Figure 4A, IFC was stronger in the NP tasks than PN
tasks, b = .26, SE = .04, p , .001. There was no significant Task
3 Grade interaction, b = .03, SE = .04, p = .422. IFC increased
significantly as grade increased, b = .34, SE = .06, p, .001.

Integer-Fraction Discrepancy

We next conducted identical analyses on IFD with overall me-
dian estimates and individual data. On median estimates, IFD
decreased with age (PN:.09,.03,.03 for third, fourth, and fifth grade;
NP: .12, .02, .02 for third, fourth, and fifth grade, respectively).

Then, we ran a linear mixed-effects model on individual-level
IFD values with grade and task (PN, NP) as fixed effects, by-par-
ticipants random slopes for task, and by-participants random inter-
cepts. IFD was larger in the PN tasks than NP tasks, b = .24, SE =
.04, p , .001. Consistent with the findings with IFC, IFD
decreased significantly as grade increased, b = �.13, SE = .04,
p , .001, indicating children develop a more coherent representa-
tion of integers and fractions with age and education (Figure 4B).
There was also a significant interaction effect between grade and
task, b = �.08, SE = .04, p, .05, indicated by a larger decrease of
IFD on the PN task with grade compared with the NP task (PN:
.88, .43, .41 for third, fourth, and fifth grade; NP: .22, .15, .09 for
third, fourth, and fifth grade, respectively).

Figure 3
Simulations of Integer-Fraction Correlation Generated From Different Combinations of Compressive, Expansive, and Linear
Representations of Integers and Fractions

Note. The simulation equation is Estimates = a 3 GivenProportionb. a is the scaling parameter. b indicates how compressive or expansive the repre-
sentation is, with b , 1 as compressive representations, b = 1 as linear representations, and b . 1 as expansive representations. In our simulations, for
the compressive representations, a = 1, b = .3; for the expansive representations, a = 1, b = 1.7; and for the linear representations, a = 1, b = 1. For
example, A2 shows that the Integer-Fraction Correlation is .94 when a participant has a compressive representation of integers and an expansive repre-
sentation of fractions. Exp = expansive; Comp = compressive. See the online article for the color version of this figure.
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Relations Between Representational Coherence and
Fractional Proficiency

How does representational coherence relate to fraction understand-
ing? To investigate this, we examined whether IFC and IFD scores
on number-line tasks predicted accuracy of fraction comparison and
ordering. Performance on fraction comparison showed substantial,
positive associations with IFC scores (PN: r = .48, p, .001; NP: r =
.48, p , .001) and negative associations with IFD scores (PN: r =
–.30, p , .01; NP: r = –.56, p , .001; Table 1). Children’s ordering
performance was also correlated with both measures (IFC on the PN:
r = .19, p, .05; IFC on the NP: r = .21, p, .05; IFD on the PN: r =
–.05, p = .515; IFD on the NP: r = –.26, p, .01).
To check that these correlations did not arise simply because

everything improves with age, we ran a generalized mixed-effects
model with accuracy in fraction comparison on each trial as the de-
pendent variable, by-participant random intercepts, and grade and
IFC in the NP and PN tasks as fixed effects. Even after controlling
for grade, we found that IFC significantly predicted comparison ac-
curacy (IFC on the PN: b = .29, SE = .08, p , .001; NP: b = .22,
SE = .08, p, .01), indicating that children with more coherent repre-
sentations of integers and fractions made more accurate comparisons

of fractions. When the same analysis was conducted on ordering ac-
curacy, IFC on the NP task marginally predicted performance in the
ordering task (b = .14, SE = .07, p = .053). Thus, coherence of frac-
tion and integer estimates on the number-line task predicts a better
ability to compare and order fractions.

We then carried out the same analysis with IFD. For the com-
parison task, IFD negatively predicted accuracy (IFD on the PN:
b = �.15, SE = .07, p , .05; NP: b = �.43, SE = .08, p , .001).
For the ordering task, IFD on the NP task negatively predicted ac-
curacy (b = �.23, SE = .06, p, .001). Thus, having a less discrep-
ant representation of integers and fractions predicts a better ability
to compare and order fractions.

Discussion

Understanding the development of integer and fraction repre-
sentations is important for mathematical cognition and education.
Here, we examined the developmental trajectory of integer and
fraction estimates and found that integer and fraction representa-
tions become more coherent with age, and that this representa-
tional coherence independently predicts fraction proficiency.

Consistent with previous research (Fazio et al., 2014), we found
that children’s estimates of integers and fractions were positively
related, and both became more accurate with age. Extending the
integrated theory (Siegler et al., 2011), we demonstrated that the de-
velopment of integer and fraction understanding is not independent,
but related to one another: children acquired more coherent repre-
sentations for integers (implicit proportion) and fractions (explicit
proportion) over development. Furthermore, individual differences
in representational coherence predicted fraction proficiency: chil-
dren with more coherent representations between integers and frac-
tions were more accurate in fraction comparison and ordering tasks.

The findings shed light on the importance of building a coherent
representation of numbers in education, but what leads to discrepant
representations of integers and fractions and how can researchers and
teachers facilitate integrated representations? One conceptual barrier
to learning fractions may be a lack of understanding of the measure-
ment properties of fractions (i.e., fractions denote magnitudes, and
their magnitudes can be represented as positions on number lines;
Hecht et al., 2003). Thus, the integer components of fractions, that is,
numerators and denominators, can bias a holistic representation of
fractional magnitudes (Ni & Zhou, 2005). A second barrier may be
incorrect analogies between integer and fraction properties. Children
may overgeneralize properties of integers to fractions, for example,

Figure 4
Mean Integer-Fraction Correlation (A) and Integer-Fraction
Discrepancy (B) in Study 1

Note. Error bars indicate 6 SEM. PN = position-to-number task; NP =
number-to-position task. See the online article for the color version of this
figure.

Table 1
Correlations Among Accuracy in Comparison and Ordering Tasks and Representational Coherence in Number Line Tasks in Study 1

PN NP PN NP
Measures Comparison Ordering IFC IFC IFD IFD

Comparison .79** .31* .48* .48* �.30** �.56*
Ordering .92*** .19* .21* �.05 �.26**
PN IFC .71*** .49* �.31* �.55*
NP IFC .61*** �.23* �.84*
PN IFD .81*** .24*
NP IFD .72***

Note. PN = position-to-number task; NP = number-to-position task; IFC = Integer-Fraction Correlation; IFD = Integer-Fraction Discrepancy. The statis-
tics in bold on the diagonal are the internal reliability of each measure.
* p , .05. ** p , .01. *** p , .001.
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integers have unique successors, and there is a finite number of inte-
gers between two integers (Vamvakoussi & Vosniadou, 2004, 2010).
We theorized that analogy serves as a learning mechanism that

helps children extend their mental number line from familiar num-
bers to novel ones. An analogy between integers and fractions would
be a special case of this general principle. If this is right, then setting
up an experimental intervention that provides cognitive support
(alignment) to facilitate analogy would be expected to lead to
changes that are normally seen in development. To test this hypothe-
sis, in Study 2, we designed a training study to examine whether
alignment of fractions to integers on equivalent number lines would
facilitate a better understanding of fractional magnitudes.

Study 2

Method

Participants

One hundred third-to-fifth graders (M = 10.04, SD = .83, 55%
females, 76% White; 25 third graders, M = 9.07, SD = .45, 52%
females; 42 fourth graders, M = 9.94, SD = .47, 62% females; and 33
fifth graders, M = 10.91, SD = .43, 48% females) participated in the
study. We recruited participants from two public school districts in
the Midwestern United States (60% of our sample) and through online
advertisements posted at childrenhelpingscience.com (20%; Sheskin
et al., 2020) and Facebook.com (20%). An additional 43 participants
who quit before completing the training phase were excluded from
further analyses (19 participants quit during the pretest, 24 participants
quit during the training, NAlignment = 15, NNoAlignment = 9).
We also recruited 46 college students (M = 19.42, SD = 1.28,

43% females, 50% White) to establish a comparison level of accu-
racy in evaluating our training. Ideally, training would bring chil-
dren to college student levels of accuracy. Adult participants
received course credit for their participation. This study was
approved by the IRB of the Ohio State University (Project
2013B0450: Early Development in Mathematical Skills).

Materials and Procedure

The current study was presented in Qualtrics and hosted online
on http://discoveriesonline.org (Rhodes et al., 2020). Data was

collected during the pandemic from May 2020 to February 2021
when a majority of school lessons were transferred to an online set-
ting; thus, it was critical to examine the effect of online teaching.
Families participated independently through a link at their preferred
place and time remotely. Children watched prerecorded video
instructions and completed the tasks online at their own pace, with-
out direct interaction with experimenters. To make sure children
saw complete task instructions, children could only advance the
program after the video instructions were played. To minimize pa-
rental interference, before the study started, we asked parents to
ensure that their children participated in a quiet environment and to
provide no help to their children as they solved problems. More-
over, we video-recorded children’s responses through the web cam-
era to monitor potential interference. This unmoderated remote
research setting minimizes interference from researchers and
ensures that all instructions are standardized (Rhodes et al., 2020).
Furthermore, our training protocol can be easily applied to class-
room settings and scaled up to a larger sample of participants.

Child participants completed a pretest, training, and posttest
phase in one session, with an average of approximately 50 min to
complete the whole session. Adult participants only completed the
pretest (see Figure 5).

Pretest and Posttest Battery

At pretest and posttest, children completed a simplified testing
battery from Study 1, consisting of number-line estimation tasks:
fraction position-to-number task, integer position-to-number task,
fraction number-to-position task, and integer number-to-position
task. The four estimation tasks and items within each task were
presented in a randomized order.

The number-line estimation tasks were the same as Study 1,
except that in the fraction NP task, only small-component fractions
were included because we did not observe a strong effect of com-
ponent size in Study 1. Therefore, there were 10 trials in each task.

Training Conditions

Children were randomly assigned to one of two conditions dur-
ing training: Alignment (N = 49) or No Alignment (N = 51).

In the Alignment condition, we presented children with integer
and fraction number lines that were aligned vertically on one
screen (Figure 6A). We aligned the two number lines in this way

Figure 5
An Illustration of the Experimental Procedure in Study 2
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to highlight the structural similarity between integers and frac-
tions. Participants were first asked to estimate the fraction (or
equivalent) of 1/11 across eight NP and PN problems, and then the
magnitude of stimuli increased as the training session progressed:
1/7, 1/4, 3/8, 2/5, 4/7, 2/3, 7/9, 5/6, and 9/10. In total, there were
80 problems (eight problems for each of 10 fractions) in the train-
ing session.
More specifically, for each fraction, children started with an

integer PN problem at the top part of the screen. We chose to
start with this task because Study 1 suggested that integer PN
problems were the easiest for children out of the four number
line estimation tasks. After children finished this problem, an in-
teger NP problem appeared on the bottom part of the screen ver-
tically aligned with the top problem, with the top problem still

appearing on the screen. No feedback was given on any of the
problems.

Then on the next screen, children completed the same integer
NP problem on the top part of the screen. After that, a fraction NP
problem appeared on the bottom part of the screen, so that children
had an opportunity to compare fraction estimates with integer esti-
mates on corresponding scales.

After that, on the next screen, children again completed the same
fraction NP problem as they just did, but it was now located at the top
of the screen, and a fraction PN problem located at the bottom of the
screen, one at a time. Finally, on the next screen, children completed
a fraction PN problem and a vertically aligned integer PN problem.

In the No Alignment condition, children completed the same
items as in the Alignment condition with two exceptions: (a) only

Figure 6
An Illustration of the Training Trials Across Conditions in Study 2

Note. Each black square denotes a trial. For each trained magnitude, in the Alignment condition, children
solved two vertically aligned problems on each screen sequentially, with the top problem remaining on the
screen when they solved the bottom problem. In the No Alignment condition, children solved the same prob-
lems one at a time on each screen in a randomized order; thereby, blocking the opportunity of visual alignment.
IPN = integer position-to-number task; INP = integer number-to-position task; FPN = fraction position-to-num-
ber task; FNP = fraction number-to-position.
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one problem was presented on the screen at a time, and (b) prob-
lems were presented in a randomized order across all trained mag-
nitudes (Figure 6B); thereby, blocking the opportunity of visual
alignment. In neither condition were children instructed to com-
pare the problems, nor did they receive any feedback on their
answers.

Video Coding

We used video recordings to check data validity (e.g., monitor-
ing potential parental inference). About half of our sample suc-
cessfully uploaded their videos (N = 46, 46% of the sample).
Consistent with previous studies using online unmoderated
research (e.g., Leshin et al., 2021), the prevalence of parental in-
terference was small (fewer than 1% of all trials). Trials with inter-
ference were excluded from further analyses.

Results

To assess participants’ performance on the number-line estima-
tion tasks, we calculated PAE for each trial. Estimates larger than
1,000 on PN tasks were deleted from further analyses (less than
.01% of the total trials). As in Study 1, there was a nonnormal dis-
tribution of PAE, so we again conducted analyses on log-trans-
formed PAE. As in Study 1, PAE beyond 3 SDs from the mean
was excluded from further analyses (.22% of the total trials). We
also calculated the same measures of representational coherence as
in Study 1, IFC and IFD. IFD beyond 3 SDs from the mean was
excluded from further analyses (1.25% of the total trials).
In the following sections, we analyzed participants’ estimation

accuracy and their representational coherence during training and
posttest while controlling for their performance at pretest, to inves-
tigate the effect of alignment on performance.

Training

First, to examine the effects of training on estimation accuracy,
we ran a series of linear mixed-effects models on separate tasks
with log-transformed PAE on each trial during training as the de-
pendent variable, grade, pretest log-transformed PAE, and condi-
tion (Alignment, No Alignment) as fixed effects, by-participant
random slopes for pretest performance, by-participant random
intercepts, and by-item random intercepts.2

We found that children who were more accurate when estimat-
ing integers and fractions on the pretest were also more accurate in
their estimates during training (IPN: b = .25, SE = .04, p , .001;
INP: b = .20, SE = .03, p , .001; FPN: b = .23, SE = .04, p ,
.001; FNP: b = .23, SE = .03, p , .001). Consistent with our hy-
pothesis, children in the Alignment condition were significantly
more accurate (i.e., PAE was lower) with fraction estimates than
children in the No Alignment condition on both PN and NP tasks
(FPN: Alignment PAE M = 14.15%, SD = .43; No Alignment
PAE M = 21.85%, SD = .30; b = .61, SE = .09, p , .001; FNP:
Alignment PAE M = 5.47%, SD = .06; No Alignment PAE M =
10.46%, SD = .11; b = .39 SE = .09, p , .001; Table 2). What is
more, alignment also yielded more accurate estimates of integers
on the NP task (INP: Alignment PAE M = 3.96%, SD = .04; No
Alignment PAE M = 5.46%, SD = .03; b = .37, SE = .07, p ,
.001) but not on the PN task (IPN: Alignment PAE M = 4.08%,
SD = .09; No Alignment PAE M = 3.43%, SD = .05; b = �.03,

SE = .08, p = .711). These results indicate that aligning fractions
to integer number lines helped children more accurately estimate
both fractional and integer magnitudes, even though children were
not explicitly instructed to draw analogies.

Next, we compared children’s estimation accuracy with that of
college students to further examine the effect of alignment on esti-
mation accuracy. To do this, we conducted a series of linear
mixed-effects models on different tasks with PAE as the depend-
ent variable, group (adults as the reference group, children in the
Alignment group, and children in the No Alignment group) as a
fixed effect, by-participant random intercepts, and by-item random
intercepts. Results showed that when children viewed integer num-
ber lines aligned with fraction number lines, their fraction esti-
mates were as accurate as, or even more accurate than, college
students (Figure 7; FNP: adults PAE M = 4.40%, SD = .04, b =
�.07, SE = .12, p = .548; FPN: adults PAE M = 3.58%, SD = .02,
b = �.30, SE = .13, p , .05). However, the performance of chil-
dren in the No Alignment condition were less accurate than col-
lege students (FNP: b = .45, SE = .12, p , .001; FPN: b = .53,
SE = .13, p, .001).

Similarly, children in the Alignment condition were as accurate
as college students when estimating integers (INP: adults PAE
M = 3.79%, SD = .02, b = �.18, SE = .10, p = .077; IPN: adults
PAE M = 1.50%, SD = .03, b = .20, SE = .11, p = .076). Children
in the No Alignment condition did not differ from college students
on the integer PN task (IPN: b = .21, SE = .11, p = .058), but they
were less accurate than college students on the integer NP task
(INP: b = .25, SE = .10, p , .05). Thus, although our intended
subject of training had been fractions, alignment led to improved
integer understanding as well.

Then we examined whether alignment facilitate representa-
tional coherence between integers and fractions. We first con-
ducted a linear mixed-effects model on training IFC with grade,
pretest IFC, condition (Alignment, No Alignment), and task
(PN, NP) as fixed effects, and by-participant random intercepts
to investigate whether alignment facilitated representational co-
herence. Results showed that pretest IFC predicted training IFC
(b = .62, SE = .06, p , .001). Alignment significantly increased
IFC compared with No Alignment (Alignment IFC M = .91,
SD = .24; No Alignment IFC M = .73, SD = .46; b = .38, SE =
.11, p , .001; Figure 8), indicating a more coherent representa-
tion between integers and fractions. There was no main effect
of grade (b = �.01, SE = .06, p = .999), task (b = .01, SE = .11,
p = .951), nor a task by condition interaction (b = .18, SE = .21,
p = .385).

Similarly, we submitted training IFD to a mixed-effects linear
model with grade, pretest IFD, condition (Alignment, No Align-
ment), and task (PN, NP) as fixed effects, by-participant random
intercepts, by-participant random slope for pretest IFD, and by-
item random intercepts. Consistent with IFC, pretest IFD predicted
training IFD (b = .23, SE = .05, p , .001). Again, Alignment sig-
nificantly decreased IFD (Alignment IFD M = .05, SD = .14; No
Alignment IFD M = .13, SD = .24; b = �.28, SE = .09, p , .01).
IFD was higher in the PN compared with NP task (b = .16, SE =
.03, p, .001). The effect of condition significantly interacted with

2 Alignment was dummy coded as �0.5, and No Alignment was dummy
coded as 0.5.
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task (b = �.17, SE = .06, p , .01), indicated by a larger difference
between the Alignment and No Alignment group in the PN than
NP (PN: Alignment IFD M = .06, SD = .18; No Alignment IFD
M = .17, SD = .29; NP: Alignment IFD M = .04, SD = .10; No

Alignment IFD M = .10, SD = .17;). There was no main effect of
grade (b = �.07, SE = .05, p = .132).

We next compared children’s representational coherence during
training with that of college students. We found that children in

Table 2
Mixed-Effects Regression Model Results on Percent Absolute Error for Training in Study 2

Predictors B SE df t p

Integer PN
(Intercept) �0.04 0.07 20.98 �0.595 .558
Grade �0.04 0.04 83.55 �0.965 .337
Pretest PAE 0.25 0.04 68.45 6.101 .0001***
Condition �0.03 0.08 85.69 �0.372 .711

Integer NP
(Intercept) �0.06 0.07 16.54 �0.910 .376
Grade �0.06 0.04 77.88 �1.814 .074
Pretest PAE 0.20 0.03 103.43 6.180 .0001***
Condition 0.37 0.07 78.11 5.242 .0001***

Fraction PN
(Intercept) �0.06 0.06 53.76 �1.011 .317
Grade �0.05 0.04 50.58 �1.074 .288
Pretest PAE 0.23 0.04 109.51 6.487 .0001***
Condition 0.61 0.09 50.99 6.949 .0001***

Fraction NP
(Intercept) �0.07 0.06 29.85 �1.144 .262
Grade �0.03 0.04 71.54 �.652 .516
Pretest PAE 0.23 0.03 108.34 7.570 .0001***
Condition 0.39 0.09 70.56 4.579 .0001***

Note. B = slope; SE = standard error; df = degree of freedom; PN = position-to-number task; NP = number-to-position task; PAE = percent absolute error.
The distribution of PAE was skewed, so we used log transformed and then standardized PAE as the dependent variable. Condition was coded as �.5 for
Alignment and .5 for No Alignment condition.
*** p , .001.

Figure 7
Mean Percent Absolute Error (PAE) Across Tasks and Conditions During Training and Posttest in Study 2

Note. Bars indicate children’s predicted PAE from 1,000 simulations of the mixed linear modeling, adjusted for grade and pretest performance. Error
bars indicate 95% confidence intervals. Dots indicate children’s raw individual average PAE. Dotted lines indicate average PAE for the adults. Gray
areas indicate standard errors. FNP = fraction number-to-position task; FPN = fraction position-to-number task; INP = integer number-to-position task;
IPN = integer position-to-number task. See the online article for the color version of this figure.
† p , .10. * p , .05. *** p , .001.
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the Alignment group did not differ significantly from college stu-
dents in terms of representational coherence (IFC: adults M = .97,
SD = .08; b = �.20, SE = .17, p = .229; IFD: adults M = .04, SD =
.06; b = .03, SE = .13, p = .807), whereas children in the No Align-
ment group produced significantly less coherent estimates than
college students (IFC: b = �.76, SE = .16, p , .001; IFD: b = .52,
SE = .13, p , .001), indicating that alignment boosted children’s
representational coherence to the same level as college students.
In summary, alignment between integers and fractions of propor-

tional magnitudes led to more accurate estimates of fraction magni-
tude, more accurate estimates of integer magnitudes, and a more
coherent representation of proportions overall. We next address
whether this understanding transferred to a posttest in which the an-
alogical source of integer number lines was unavailable.

Posttest

Seven participants (2 third graders, 3 fourth graders, and 2 fifth
graders) who did not complete the posttest phase were excluded
from further analyses. An additional one participant did not finish
the Integer PN task, two participants did not finish the Integer NP
task, one participant did not finish the Fraction NP task, and six

participants did not finish the Fraction PN task on the posttest;
thus, they were excluded from the following analyses on the corre-
sponding task.

Parallel to our analyses for training, we implemented a series of
linear mixed-effects models for each task separately with log-
transformed PAE as the dependent variable and grade, pretest per-
formance (measured by log-transformed PAE), and condition
(Alignment, No Alignment) as fixed effects, a by-participant ran-
dom slope for pretest performance, by-participant random inter-
cepts, and by-item random intercepts.

Consistent with our findings for training, children who were
more accurate when estimating integers and fractions on the pretest
were also more accurate during the posttest (IPN: b = .26, SE = .06,
p, .001; INP: b = .27, SE = .04, p, .001; FPN: b = .32, SE = .04,
p , .001; FNP: b = .31, SE = .04, p , .001; Table 3). Children in
the Alignment condition were significantly more accurate when
estimating both fractions and integers than children in the No
Alignment condition (IPN: Alignment PAE M = 2.10%, SD = .04;
No Alignment PAE M = 2.72%, SD = .04; b = .11, SE = .08, p =
.172; INP: Alignment PAE M = 5.01%, SD = .04; No Alignment
PAE M = 6.12%, SD = .06; b = .20, SE = .09, p , .05; FPN:

Figure 8
Mean Integer-Fraction Correlation (IFC) and Integer-Fraction Discrepancy
(IFD) Across Training and Posttest in Study 2

Note. Bars indicate children’s predicted IFC/IFD from 1,000 simulations of the mixed lin-
ear modeling, adjusted for grade and pretest performance. Error bars indicate 95% confi-
dence intervals. Dots indicate children’s raw individual average IFC/IFD. Dotted lines
indicate adults’ average IFC/IFD. Gray areas indicate standard errors. IFC = Integer-
Fraction Coherence; IFD = Integer-Fraction Discrepancy. * p , .05. *** p , .001. See
the online article for the color version of this figure.
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Alignment PAE M = 18.01%, SD = .64; No Alignment PAE M =
22.99%, SD = .47; b = .19, SE = .09, p = .052; FNP: Alignment
PAE M = 6.30%, SD = .07; No Alignment PAE M = 9.44%, SD =
.11; b = .21, SE = .07, p , .01; Figure 7). This indicates that align-
ing fractions to integer number lines helps children better estimate
fractional magnitudes, even when the analogical sources are not
presented.
We then compared children’s performance at posttest with that

of college students to further examine the impact of training on
tasks that tap a similar underlying construct, magnitude knowledge
(see Figure 7). Children in the Alignment condition performed
similarly to adults when estimating fractions (FNP: b = .17, SE =
.13, p = .195; FPN: b = .16, SE = .15, p = .293) and integers (INP:
b = .13, SE = .12, p = .273; IPN: b = .13, SE = .12, p = .282). In
contrast, estimates of children in the No Alignment condition were
less accurate than adults in all tasks (FNP: b = .47, SE = .13, p ,
.001; FPN: b = .48, SE = .15, p , .01; INP: b = .34, SE = .12, p ,
.01; IPN: b = .20, SE = .12, p = .084).
Does the effect of alignment on representational coherence per-

sist at posttest? To test this, we conducted parallel analyses to the
ones that we conducted on the training data. On posttest, there was
no effect of alignment on IFC (Alignment IFC M = .89, SD = .26;
No Alignment IFC M = .80, SD = .39; b = .11, SE = .12, p =
.356). However, Alignment significantly decreased IFD (Align-
ment IFD M = .07, SD = .14; No Alignment IFD M = .10, SD =
.20; b = �.17, SE = .09, p , .05). There was also an interaction
effect between condition and task on IFD (b = �.20, SE = .08, p
, .01), indicated by a larger difference between the Alignment
and No Alignment group in the PN than NP task (PN: Alignment
M = .07, SD = .15; No Alignment M = .12, SD = .25; NP: Align-
mentM = .07, SD = .12; No AlignmentM = .09, SD = .15).
Condition may not have influenced IFC because children in the

Alignment group were at ceiling on posttest. Children in the

Alignment group did not differ significantly from college students
in terms of representational coherence (IFC: b = �.31, SE = .18,
p = .083; IFD: b = .20, SE = .13, p = .129); whereas children in the
No Alignment group produced significantly less coherent estimates
than college students (IFC: b = �.63, SE = .18, p , .001; IFD: b =
.43, SE = .13, p, .01). Figure 8 reports covariate-adjusted IFC and
IFD for children across groups compared with college students.

In summary, we found that children in the Alignment group
were more accurate when estimating fractions on number lines
and possessed more coherent representations of integers and
fractions even at posttest when a direct alignment between inte-
gers and fractions was not visually presented. Moreover, children
randomly assigned to the Alignment group produced estimates
that were as accurate and as coherent as college students’ esti-
mates. These findings suggest that alignment between integers
and fractions helps children grasp the underlying relational struc-
ture of fractions.

Discussion

Study 2 showed that alignment between integers and fractions
on number lines yielded greater estimation accuracy for both
fractions and integers, as well as more coherent and less discrep-
ant representation of proportions. Posttraining tests indicated
that the training effect persisted even when analogical sources
desisted. Our results demonstrate that, even if children were not
specifically instructed to make a comparison between the integer
and fraction estimation problems, the vertical alignment between
integer and fraction number lines afforded children the opportu-
nity to spontaneously draw an analogy in which they could boot-
strap their prior integer knowledge in an effort to make more
accurate fraction estimates.

Table 3
Mixed-Effects Regression Model Results on Percent Absolute Errors for Posttest in Study 2

Predictors B SE df t p

Integer PN
(Intercept) �0.04 0.07 16.48 �0.500 .624
Grade �0.04 0.04 68.59 �0.910 .366
Pretest PAE 0.26 0.06 63.95 4.546 .0001***
Condition 0.11 0.08 68.82 1.380 .172

Integer NP
(Intercept) �0.04 0.07 16.06 �0.509 .618
Grade �0.01 0.05 58.50 �0.205 .838
Pretest PAE 0.27 0.04 92.52 6.985 .0001***
Condition 0.20 0.09 59.52 2.187 .033*

Fraction PN
(Intercept) �0.02 0.07 26.63 �0.235 .816
Grade �0.10 0.05 30.26 �2.179 .037
Pretest PAE 0.32 0.04 81.92 7.166 .0001***
Condition 0.19 0.09 29.68 2.027 .052

Fraction NP
(Intercept) �0.06 0.06 18.53 �1.059 .303
Grade �0.02 0.04 38.05 �0.546 .588
Pretest PAE 0.31 0.04 88.23 7.079 .0001***
Condition 0.21 0.07 38.75 2.819 .008*

Note. B = slope; SE = standard error; df = degree of freedom; PN = position-to-number task; NP = number-to-position task; PAE = percent absolute error.
The distribution of PAE was skewed, so we log transformed and then standardized PAE as the dependent variable. Condition was coded as �.5 for
Alignment and .5 for No Alignment condition.
* p , .05. *** p , .001.
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Our intervention showed substantial educational promise. In
one short and unsupervised session, the simple intervention of
aligning fractions and integers on number lines improved child-
ren’s number-lines estimates to levels as good as, or even better
than, college students. The overall effect size of our intervention
session (d = .22–.56) were comparable to some past fraction inter-
vention studies with multiple sessions (see Misquitta, 2011; Roes-
slein & Codding, 2019, for reviews). This overall effect size is
probably an underestimate of the true training effect due to many
older children reaching ceiling. For third graders, who had more
improvement to make, effect sizes were substantially larger (d =
.57–1.15).

General Discussion

The current studies investigated children’s understanding of the
implicit proportions denoted by ratios of integers and the explicit
proportions denoted by fractions. The two studies demonstrated
that children develop a more coherent representation of explicit
and implicit proportions between third and fifth grade, that coher-
ence predicts fraction proficiency (Study 1), and that comparing
implicit and explicit proportions helps children to form a more
coherent, accurate representation of explicit and implicit propor-
tions (Study 2).

The Role of Integers in Fraction Learning

Our results strongly supported the idea that integer knowledge
can be leveraged to positively influence fraction learning. In con-
trast to claims that integer knowledge and fraction knowledge de-
velop separately (Gallistel & Gelman, 1992; Geary, 2006), our
findings suggest that knowledge of integers does not necessarily
interfere with the development of fraction understanding. Rather,
the development of fractions and integers shared developmental
continuities: children’s integer and fraction estimates were posi-
tively correlated. This finding supports the integrated theories of nu-
merical development (Siegler et al., 2011). Further, we examined
how an integrated numerical understanding develops: (a) develop-
ment of integer and fraction understanding is not independent, but
rather the two interact and become coherent over development; and
(b) children can bootstrap their understanding of fractions from
their understanding of integers, if given the right cognitive support.
Mere practice with integers was not sufficient for children to

improve their understanding of fractions. Consistent with struc-
ture-mapping theory (Gentner, 1983; Gentner & Markman, 1997),
alignment between integer and fraction magnitudes on number
lines highlights the common underlying relational structure
between the given number and the total range, as well as the dif-
ferences (e.g., each integer has a unique successor, but fractions
do not have unique successors and can be placed between two ad-
jacent integers on the number line). Therefore, alignment serves as
cognitive support for children to boost their analogical transfer.
Taken together, our correlational and experimental data are con-
sistent with the idea that analogy serves as a learning mechanism
that helps children extend their mental number line from familiar
numbers to novel ones.

The Role of Analogy in Mathematical Development

This idea of structure mapping has also been proposed to
explain how children learn to link symbolic numerals (e.g., 3) with
their referents (e.g., 3 apples; Case et al., 1996; Sullivan & Barner,
2013, 2014). Namely, children learn the meaning of numbers
based on mapping the relational structure of numbers to the struc-
ture of numerical quantities. In this view, knowing the meaning of
“twenty” helps children learn the meaning of “forty” by structure
mapping. For example, the ordinal relations of the two numbers
(e.g., forty is twice as far into the count list as twenty) can be
mapped to the cardinal relations of two numbers (forty denotes
twice the numerosity of twenty). This mapping of structure pro-
vides a basis for understanding the cardinality of unfamiliar num-
bers whose ordinal meaning is known (a process known as
“bootstrapping”; Carey, 2004; Gentner, 2010). Structure-based
analogy, in comparison with item-based associative learning in
which the meaning of each number needs to be linked with a men-
tal representation of approximately this number of items (Lipton
& Spelke, 2005), seems an effective way to accelerate numerical
development because it enables children to “bootstrap” their lim-
ited experience with finite numbers to a potentially infinite range.

More broadly, knowledge of integer arithmetic can also lead to
positive transfer to fraction arithmetic through analogies (Sidney,
2020; Sidney & Alibali, 2015, 2017; Sidney et al., 2019). To facili-
tate knowledge of fraction division, Sidney and Alibali (2015) pro-
vided fifth and sixth graders either a surface-level analog of another
fraction operation or a structure-level analog of integer division.
Students who were able to draw comparisons between division with
integers and fractions gained more conceptual knowledge of frac-
tion division than those who were able to draw comparisons
between different fraction operations. Moreover, this positive trans-
fer occurred even when the analogy between integer and fraction di-
vision was not explicitly instructed. In a follow-up study, Sidney
and Alibali (2017) showed that solving integer division problems
immediately before fraction division problems allowed students to
analogically map between their integer and fraction knowledge, and
improved learners’ understanding of the underlying conceptual
structure of division.

Furthermore, presenting information in a familiar, intuitive for-
mat (e.g., relations between integers) helps people solve challeng-
ing mathematical problems that involve proportion understanding.
For example, adults were better able to solve Bayesian problems
when the problems were presented in a frequency format that high-
lights relations of integers (e.g., 10 out of 1,000 women at age 40
have breast cancer) compared with a probability format with math
symbols (e.g., the possibility of breast cancer is 1% for women at
age 40; Gigerenzer, 1996; Gigerenzer & Hoffrage, 1995). Building
a bridge between explicit proportions (e.g., 1%) and implicit pro-
portions (e.g., 10 out of 1,000) can allow people to bootstrap their
understanding of the less intuitive probability format from the more
familiar frequency format. Sedlmeier and Gigerenzer (2001) dem-
onstrated that those students who learned to reframe the probability
format as the frequency format helped them to better learn and
solve Bayesian problems, and the training effects lasted longer
compared with the conventional way of teaching with only the
probability format (Sedlmeier & Gigerenzer, 2001).
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Limitations and Future Directions

Our findings have important educational implications. Number
lines are a central conceptual structure that has been shown to be a
useful tool in teaching children fractional magnitudes (Fazio et al.,
2016; Hamdan & Gunderson, 2017; Moss & Case, 1999). With the
cognitive support of visual alignment to support children as they
attempt to draw analogies between less familiar fraction magnitudes
and more familiar integers, children can rely on their already supe-
rior integer knowledge to learn fractions. Thus, classroom instruc-
tion can integrate a systematic comparison between the placement
of integers and fractions on number lines to improve children’s
understanding of fractional magnitudes.
However, several issues were not addressed, including the

breadth and duration of change in proportional reasoning. Ideally,
we would test a much broader range of numbers on posttest and
include these numbers in tests other than number-line estimation.
Unfortunately, we were constrained by the fact that the training
study needed to be short enough to administer in one session in a
new online format at the start of the coronavirus disease 2019
(COVID-19) global pandemic. It would be useful to look at
whether children can transfer their boosted fractional understand-
ing to other fraction proficiency tasks beyond the number line esti-
mation tasks, such as comparing and ordering fractions. Moreover,
it would be useful to see how durable children’s improved under-
standing of fractional magnitudes is. We anticipate that analogy
can serve as a broad mechanism to expand the mental number line
and improve fraction understanding underlying a variety of frac-
tion proficiency tasks. We also anticipate that the training effect
would last over time.
Future studies might also shed light on the moderators of fraction

learning. For example, evidence from both longitudinal studies and
computational modeling suggests that individual differences in ex-
ecutive functions predict children’s analogical reasoning ability af-
ter controlling for age (Doumas et al., 2018; Morrison et al., 2011;
Simms et al., 2018). Future studies can further explore how work-
ing memory updating and inhibitory control can moderate the effect
of training.
Finally, although this study investigates only the effect of align-

ment, providing corrective feedback to children’s estimates might
further foster learning. Previous studies showed that interventions
featuring feedback on children’s estimates on fraction number
lines facilitated a better understanding of fractional magnitudes
(Fazio et al., 2016; Gunderson et al., 2019). Future studies may
explore whether a training intervention combining both alignment
and feedback yields an additive effect and even more improve-
ments in fraction understandings.

Conclusions

Fractions are important to educational and professional success,
but can be difficult for learners to grasp. However, novel mathe-
matical concepts, like fractions, can be easier to understand if they
build on children’s foundational prior knowledge by leveraging
analogies. The current study explored (a) the developmental trajec-
tories of integer and fraction representations during a critical time
when students in the United States learn fractions in their formal
classroom lessons, and (b) whether alignment between more famil-
iar integers and less familiar fractions represented on number lines

would prompt children to draw analogies between these numerical
concepts and improve fraction estimation performance. Our find-
ings show that proportional representations of integers and frac-
tions become more coherent over time, and alignment between
integers and fractions facilitated more accurate fraction representa-
tions. In summary, our findings do not support the notion that inte-
gers must be seen as an obstacle to fraction learning. Rather, our
findings suggest that preexisting, foundational integer knowledge
can be a stepping stone toward an integration of integer and frac-
tion knowledge when instruction draws on the power of analogies.
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